首页> 外文OA文献 >X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories
【2h】

X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories

机译:X-sRam:在CmOs静态随机中启用存储器内布尔计算   访问记忆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon-based Static Random Access Memories (SRAM) and digital Boolean logichave been the workhorse of the state-of-art computing platforms. Despitetremendous strides in scaling the ubiquitous metal-oxide-semiconductortransistor, the underlying \textit{von-Neumann} computing architecture hasremained unchanged. The limited throughput and energy-efficiency of thestate-of-art computing systems, to a large extent, results from the well-known\textit{von-Neumann bottleneck}. The energy and throughput inefficiency of thevon-Neumann machines have been accentuated in recent times due to the presentemphasis on data-intensive applications like artificial intelligence, machinelearning \textit{etc}. A possible approach towards mitigating the overheadassociated with the von-Neumann bottleneck is to enable \textit{in-memory}Boolean computations. In this manuscript, we present an augmented version ofthe conventional SRAM bit-cells, called \textit{the X-SRAM}, with the abilityto perform in-memory, vector Boolean computations, in addition to the usualmemory storage operations. We propose at least six different schemes forenabling in-memory vector computations including NAND, NOR, IMP (implication),XOR logic gates with respect to different bit-cell topologies $-$ the 8T celland the 8$^+$T Differential cell. In addition, we also present a novel\textit{`read-compute-store'} scheme, wherein the computed Boolean function canbe directly stored in the memory without the need of latching the data andcarrying out a subsequent write operation. The feasibility of the proposedschemes has been verified using predictive transistor models and Monte-Carlovariation analysis.
机译:基于硅的静态随机存取存储器(SRAM)和数字布尔逻辑一直是最新计算平台的主力军。尽管在扩展无处不在的金属氧化物半导体晶体管方面取得了巨大进步,但基础的\ textit {von-Neumann}计算体系结构仍保持不变。现有技术计算系统的有限的吞吐量和能量效率在很大程度上是由众所周知的\ textit {von-Neumann瓶颈}造成的。由于对像人工智能,机器学习\ textit {etc}这样的数据密集型应用的重视,近来von-Neumann机器的能量和吞吐效率低下更加突出。减轻与von-Neumann瓶颈相关的开销的一种可能方法是启用\ textit {in-memory}布尔计算。在本手稿中,我们介绍了传统SRAM位单元的增强版本,称为\ textit {X-SRAM},除了通常的存储操作外,还可以执行内存中的矢量布尔运算。我们提出了至少六种不同的方案来实现内存中的矢量计算,包括针对不同的位单元拓扑$-$,8T单元和8 $ ^ + $ T差分单元的NAND,NOR,IMP(蕴含),XOR逻辑门。另外,我们还提出了一种新颖的\ textit {'read-compute-store'}方案,其中可以将计算的布尔函数直接存储在存储器中,而无需锁存数据并进行后续的写操作。已使用预测晶体管模型和蒙特卡洛变异分析验证了所提出方案的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号